A Fragment Answer Inspired View of Afterthoughts: Gender Mismatches in Greek

Stergios Chatzikyriakidis
Centre for Linguistic Theory and Studies in Probability (CLASP)
Department of Philosophy, Linguistics and Theory of Science (FLoV)
University of Gothenburg
stergios.chatzikyriakidis@gu.se

March 29th, 2018
The Right periphery

- Has received less attention than its left analogue (at least in Greek)
 - Furthermore, most of these studies are not even about the Right Periphery per se
 - Elucidate specific phenomena that are partially connected to the Right Periphery (e.g., Clitic Doubling, CRD)
Right Dislocations

Right dislocations can be:

- Argumental
- Non-argumental

Argumental RDs

(1) Ton xtipise o Giorgos, to him.CL-ACC hit the.NOM George.NOM, the.ACC Giani
John.ACC
‘George hit John.’

(2) Xtipise to Giani xtes,, o hit the.ACC John.ACC yesterday the.NOM Giorgos
George.NOM
‘George hit John yesterday (clarifying that George is the one that hit John).’
Right Dislocations

Non-argumental RDs

(3) Ton xtipise to Giani, xtes him.CL-ACC hit the.ACC John.ACC yesterday
‘S/he hit John yesterday.’

(4) Ton xtipise to Giani, sto parko him.CL-ACC hit the.ACC John.ACC in_the
‘S/he hit John in the park.’
Suggests that there are two types of RDs with distinctive intonational patterns

- Comma intonation: re-establishing the topic of the discourse (backgounded topics)
- Period intonation with an additional pitch accent on the RDed XP: afterthoughts
 - They function as clarification strategies
Some Background

This distinction is quite older, at least in the functional literature

- *Afterthought NPs* or *afterthought topicalization* (Dik 1980 and Givón 1990 respectively among many others)
- Some more radical views: all RDs are afterthoughts! (e.g. Hyman 1975, Givón 1976)
 - Problematic view: at least some of the RDs function as topic re-establishers
 - Lambrecht (1981) opposed this view: proposes RDs are anti-topics
Recent work in formal linguistics

- Even though, recent mention of an afterthought interpretation of RDs: not much explicit work
 - Averintseva-Klitsch (2008,2009); De Vries (2007,2009) and Ott & De Vries (2012a,b) for German and Dutch respectively
- No explicit work for Greek
 - Besides myself!
Some terminology

I am going to be distinguishing between:

1. Backgounded Right Dislocation (BRD)
2. Afterthoughts (ATs)

- Single comma for comma intonation (BRDs), double comma for period intonation (ATs)

(5) Ton xtipise o Giorgos, to him.cl-acc hit the.nom George.nom, the.acc Giani
 John.acc
 ‘George hit John.’

(6) Ton xtipise o Giorgos,, to him.cl-acc hit the.nom George.nom, the.acc Giani
 John.acc
 ‘George hit John.’
Some terminology

There is a further distinction made by Ott & De Vries (2012a) into specificational and identificational ATs ((7) and (8) respectively)

(7) O Giorgos exi kati omorfo: the.NOM George.NOM has something beautiful ena dekaintso tablet a.NOM ten-inch.NOM tablet ‘George has something beautiful: a 10 inch tablet.’

(8) O Giorgos ton kseri,, ton the.NOM George.NOM him.CL-ACC knows the.ACC Giani John.ACC ‘George knows John’
Some terminology

- Identificational: providing more information in order for the referent to be identified
- Specificational: the referent is identified directly
Some terminology

- Not sure this is a useful distinction especially for the account to be put forth!
 - Time permitting, I will come back to this!
An intriguing fact about Greek ATs

The neuter pronoun it is mismatched with an AT marked for feminine or masculine gender

\[(9) \quad \text{To \, diavasa \, xtes,, \, tin \, it.CL-ACC-NEUT \, read.1SG \, yesterday \, the.ACC-FEM \, epistoli \, letter.ACC-FEM} \]

‘I read the letter yesterday.’
The same examples are not acceptable as BRDs (i.e. with comma intonation)
Some more real life examples

(11) To
it.CL-ACC-NEUT drank the.ACC-FEM beer.ACC-FEM
the.ACC-FEM vodka.ACC-FEM
‘I drank the vodka’

(12) To
it.CL-ACC turn-upside-down. the.ACC-FEM
dining-table.ACC-FEM
‘I turned the table upside down’
Introduce and motivate Dynamic Syntax (DS)

Propose an account of ATs:

- Similarly to De Vries (2007, 2009) and Ott & De Vries (2012a, b), ATs are analyzed on a par with fragment answers.
- Contrary to these researchers though, no assumption of elided structure will be made.
- Gender Mismatches are predicted in a way that I would argue is fairly natural.
- General predictions of the account as regards ATs and some comparisons.
• Parsing oriented model
• Building representations of content as monotonic tree growth of online sequence of words, driven by requirements (\(?X\))
• Starting point: a requirement to build a proposition (\(?Ty(t)\))

e.g. Parsing ‘O Gianis xtipise to Giorgo’

\[?Ty(t), \diamond \mapsto Fo(U upset'(Giorgo')(John')), Ty(t), \diamond \]

Use of binary trees encoding argument structure

Every treenode bears a Type (Ty) and a Formula (Fo) value
A language to talk about trees: LOFT (Blackburn & Meyer-Viol, 1994)

to the point of view of treenode n, $T_n(n)$:

- $\langle \downarrow_0 \rangle X$ X holds at argument daughter of $T_n(n)$.
- $\langle \downarrow_1 \rangle X$ X holds at functor daughter of $T_n(n)$.
- $\langle \uparrow \rangle X$ X holds at mother of $T_n(n)$.
- $\langle \downarrow_* \rangle X$ $T_n(n)$ dominates X (reflexive dominance).
- $\langle \uparrow_* \rangle X$ $T_n(n)$ is dominated by X (reflexive dominance).
- $\langle \downarrow^+ \rangle X$ $T_n(n)$ dominates X (irreflexive dominance).
- $\langle \uparrow^+ \rangle X$ $T_n(n)$ is dominated by X (irreflexive dominance).
- $\langle L \rangle X$ the LINK relation (between nodes in distinct trees)
- $\langle L^{-1} \rangle X$ the inverse LINK relation.

Requirements: $?X$ for any X including modal statements – requirements on future developments
Semantic underspecification (formula underspecification)

- Pronouns project META-VARIABLES (U)
 - Substitution from context
- Subject pro-drop languages are assumed to project a metavariable in the subject node
 - Substitution from context or from the natural language string itself

e.g.

C: O Gianis xtipise ton Giorgo

T: Ton ida.

Tree as Context:

\[\text{Fo}(\text{xtipise'}(\text{Giorgo'})(\text{Gianis'})) \]

Tree under Construction:

\[?\text{Ty}(t) \]

\[\text{Fo}(\text{Stergios'}) \]

\[?\text{Ty}(e \rightarrow t) \]

\[\text{Fo}(V_{\text{Male}}), \text{Fo}(ida') \]

\[?\exists x \text{Fo}(x) \]
Metavariabes must be substituted sometime during the parsing process.

In case this is not done, the parse cannot be completed, given that metavariables carry a requirement for a proper formula value ($\exists x. F_0(x)$).

The only exception to this rule is WH metavariables. These can remain unresolved, e.g. in Wh questions. They are assumed not to project a requirement for a proper formula value.
Structural Underspecification

Unfixed nodes

Nodes that have not yet found their position in the tree structure

*Adjunction - Update within a single tree

$$Tn(a)$$

$$<\uparrow \ast > Tn(a), ?Ty(e), ?\exists x. Tn(x), \Diamond$$
Parsing *To Giani* ‘John’ in *To Giani* *xtipise* ‘S/He Hit John’

\[?Ty(t), Tn(n) \]

\[\langle \uparrow^* \rangle Tn(n), \\
Ty(e), Fo(\textit{Giani'}), \\
?\exists x. Tn(x), \diamond \]
The DS framework - Unfixed nodes

Just before MERGE of the unfixed node

\[? \text{Ty}(t) \]

\[\text{Fo}(\text{Giani'}), \text{Ty}(e), ?\exists x. \text{Ty}(x), \langle \uparrow^* \rangle ? \text{Ty}(t) \]

\[\text{Fo}(U'), ?\exists x. \text{Fo}(x), \text{Ty}(e) \]

\[? \text{Ty}(e \rightarrow t) \]

\[\text{Fo}(\text{xtipise'}), \text{Ty}(e \rightarrow (e \rightarrow t)) \]
After MERGE

\[\exists x. Fo(x), Ty(e) \]

\[Fo(U_x), Ty(e) \]

\[?Ty(t) \]

\[?Ty(e \rightarrow t) \]

\[Fo(Giani'), Ty(e), \Diamond \]

\[Fo(xtipise'(x)(y)), Ty(e \rightarrow (e \rightarrow t)) \]
A general mechanism of LINKing models the sharing of information across nodes that share a common term.

The tree from which the LINK starts provides the context in which the second tree is processed.

e.g. relative clauses: John who smokes left.

\[Tn(a), Ty(t), Fo(\text{Leave}'(John')) \land Fo(\text{Smoke}'(John')) \]

\[
\begin{array}{c}
Tn(n), \quad Fo(\text{Leave}') \\
John' \\
\langle L^{-1}\rangle Tn(n), Ty(t), Fo(\text{Smoke}'(John')), \\
\diamond Fo(John'), \\
Fo(John') \quad Fo(\text{Smoke}')
\end{array}
\]
Hanging topics

- A LINK relation from a type e node to a type t requiring node is built
- The formula value of the topic must be found somewhere in the LINKed tree

Parsing o Gianis ‘John’ in o Gianis, ton ida htes as for John ‘I saw him yesterday’

\[
\langle L \rangle Tn(0), \quad \langle L^{-1} \rangle Tn(n), \quad ?Ty(t), \quad ?\langle D \rangle Fo(Gianis')
\]

\[
Fo(Gianis'), \quad [\downarrow]^T, \quad Ty(e)
\]
The right dislocation analogue of HTLD (this is BRD in the terminology used) is also modelled using a LINK relation.

However, the LINK in this case is projected from a type t complete node to a type e requiring one.

A requirement that the BRD shares the same Fo with one of the Fo values of the main tree (Cann et al. 2004, 2005; Chatzikyriakidis 2010).

Parsing xtipise to Giorgo, o Gianis ‘John hit George’

\[
T_y(t), F_o(xtipise'(Gioro')(Gianis'))
\]

\[
F_o(Gianis'), T_y(e)
\]

\[
T_y(e \rightarrow t), F_o(xtipise'(Giorgo'))
\]

\[
F_o(Giorgo), T_y(e)
\]

\[
F_o(xtipise'), T_y(e \rightarrow (e \rightarrow t))
\]

\[
\langle L^{-1} \rangle T_n(0)
\]

\[
?T_y(e), ?F_o(Gianis)
\]
The fact that the LINK is projected from a type t complete predicts that:

- BRDs are optional
- BRDs re-establish or re-introduce a referent already present in the host clause
A: *Who did Mary upset?* B: *John*

- *John* is parsed within the context of the WH question.
- LINKed to that structure with a type e requirement

\[(13) \quad \text{Before parsing the fragment answer}\]

\[
\begin{align*}
Ty(t), & \quad Fo(upset'(WH)(Mary')) \\
Ty(e), & \quad Fo(Mary') \quad Ty(e \rightarrow t), \quad Fo(upset'(WH)) \\
Ty(e), & \quad Fo(WH), \quad Ty(e \rightarrow (e \rightarrow t)), \quad Fo(upset')
\end{align*}
\]
(14) Parsing the fragment and substitution

\[Ty(t), Tn(0), Fo(upset'(WH)(Mary')) \]

\[Ty(e), Fo(Mary') \]

\[Ty(e \rightarrow t), Fo(upset'(WH)) \]

\[Ty(e), Fo(WH), Fo(John'), \diamond \]

\[Ty(e \rightarrow (e \rightarrow t)), Fo(upset') \]

\[\langle L^{-1}\rangle Tn(0), Ty(e), Fo(John') \]

\[\diamond \]
Afterthoughts can be thought of as clarifications:

\[(15) \text{ Afterthought } (\alpha, \beta) \text{ is a cognitive-level, subordinating discourse relation, which holds whenever the speaker of } \alpha (=\text{host sentence}) \text{ and } \beta (=\text{AT}) \text{ supplies } \alpha \text{ with the speech act related goal of clearing the reference of a discourse referent } x \text{ that has been introduced in } \alpha \text{ by establishing a relation } x = z, \text{ where } z \text{ is a discourse referent introduced in } \beta, \text{ and the reference of } z \text{ in the discourse representation is assumed to be unambiguous [Averintseva-Klitch 2008].} \]
ATs, as already said as clarification answers to implicit questions

- The speaker provides a clarification in order to “avoid” the question that the AT is an answer to
- Preventing the hearer from asking a clarification question.

(16) Ton ida to Giorgo,, xtes him.CL-ACC saw the.NOM George.NOM yesterday ‘I saw George yesterday (clarifying that it was yesterday).’
ATs as fragment answers

Under this view, the AT in (17)

\[(17) \quad \text{Ton} \quad \text{xtipise o Giorgos, to him.cl-acc hit the.nom George.nom, the.acc Giani John.acc} \]

‘George hit John.’

is an answer to a question like \textit{pion xtipise o Giorgos} ‘who did George hit’

\[(18) \quad \text{A: Pion xtipise o Giorgos B: To who.cl-acc hit the.nom George.nom, the.acc Giani John.acc} \]

‘Who did George hit? John.’
The fragment answer will be parsed within the context of the question

(19) After parsing to Giani, ‘the John’ within the context of Pion xtipise o Giorgos? ‘Who did George hit?’

Tree as context

\[
\begin{align*}
&Ty(t), \\
&Fo(xtipise’(WH_{male})(Giorgos’)), \\
&Ty(e), \\
&Fo(Giorgos’), \\
&Ty(e \rightarrow t), \\
&Fo(xtipise’(WH_{male})).
\end{align*}
\]

Final tree (after fragment answer)

\[
\begin{align*}
&Ty(t), \\
&Fo(xtipise’(WH_{male})(Giorgos’)), \\
&Ty(e), \\
&Fo(Giorgos’), \\
&Ty(e \rightarrow t), \\
&Fo(xtipise’(WH_{male}))), \\
&Ty(e \rightarrow (e \rightarrow t)), \\
&Fo(xtipise’).
\end{align*}
\]
The same process occurs with adverbial ATs

In (16), the adverb _xtes_ ‘yesterday’ is a fragment answer to the implicit clarification question _pote ides ton Giorgo_ ‘When did you see George’

\[
Ty(t), \; Fo(ides(Giorgo')(Maria')(s_i', s_i' \subseteq WH_t \land WH_t < s_{now})), \;
\]

\[
Ty(e_s), \; Fo(\epsilon, s_i', s_i' \subseteq WH_t \land WH_t < s_{now}) \quad \text{and} \quad Ty(e_s \rightarrow t), \; Fo(ides'(Giorgo')(Maria'))
\]

\[
Ty(e), \; Fo(Maria') \quad \text{and} \quad Ty(e \rightarrow (e_s \rightarrow t)), \; Fo(ides'(Giorgo'))
\]

\[
Ty(e), \; Fo(Giorgo') \quad \text{and} \quad Ty(e \rightarrow (e \rightarrow (e_s \rightarrow t))), \; Fo(ides')
\]
The Analysis

- The AT comes into parse updating the \(WH_t \) time metavariable into yesterday’s past time.

\[(20) \quad \text{Parsing the AT } \mathit{xtes} \text{ ‘yesterday’}
\]

\[
\begin{align*}
\mathit{Ty}(t), & \quad \mathit{Fo}(\mathit{ides}(\mathit{Giorgo'})(\mathit{Maria'})(s_i', s_i' \subseteq t_{\mathit{ystrd}} \land t_{\mathit{ystrd}} < s_{\mathit{now}})), \diamond

\mathit{Ty}(e_s), & \quad \mathit{Fo}(\epsilon, s_i', s_i' \subseteq t_{\mathit{ystrd}} \land t_{\mathit{ystrd}} < s_{\mathit{now}}) \quad \mathit{Ty}(e_s \rightarrow t), \quad \mathit{Fo}(\mathit{ides}(\mathit{Giorgo'})(\mathit{Maria'}))

\mathit{Ty}(e), & \quad \mathit{Fo}(\mathit{Maria'}) \quad \mathit{Ty}(e \rightarrow (e_s \rightarrow t)), \quad \mathit{Fo}(\mathit{ides}(\mathit{Giorgo'}))

\mathit{Ty}(e), & \quad \mathit{Ty}(e \rightarrow (e \rightarrow (e_s \rightarrow t))), \quad \mathit{Fo}(\mathit{Giorgo'}) \quad \mathit{Fo}(\mathit{ides'})
\end{align*}
\]
How can we make sense of data like the following?

(21) To ida xtes,, tin it.CL-ACC-NEUT saw.1SG yesterday the.ACC-FEM ekpobi show.ACC-FEM

‘I saw the show yesterday.’

Can we maintain the same fragment answer inspired account?

I claim that we can!
Ok, let us try and parse (21)

Parsing the sentence before the AT

(22) Parsing to ida xtes in to ida xtes, tin ekpobi ‘I saw the show yesterday’

\[?Ty(t) \]

\[Ty(e_s), \]

\[Fo(\epsilon, s_i', s_i' \subseteq t_{ystrd} \]

\[\wedge t_{ystrd} < s_{now}) \]

\[?Ty(e_s \rightarrow t) \]

\[Ty(e), \]

\[Fo(\text{Stergios'}) \]

\[?Ty(e \rightarrow (e_s \rightarrow t)), \]

\[Ty(e), \diamond \]

\[?\exists x. Fo(x) \]

\[Fo(U_{neut}) \]

\[Ty(e \rightarrow (e \rightarrow (e_s \rightarrow t))) \]

\[Ty(\text{ida'}) \]
The tree cannot be compiled, no Fo value is provided for the object.

This is the assumption the producer makes as regards the sentence before the AT:

- Otherwise, no need for the AT!

The relevant clarification question:

(23) Ti ides xtes? Tin what.CL-ACC saw.1SG yesterday the.ACC-FEM ekpobi show.ACC-FEM ‘What did you watch yesterday? The show.’

The Wh element *ti* is underspecified for gender!
(24) Ti ides? To vivlio/
what.CL-ACC saw.1SG the.ACC-FEM show.ACC-FEM
Ton polieleo
the.ACC-MASC
‘What did you see? The show/the chandelier.’
The Analysis: Gender Mismatches in Greek

- The first key to the attested mismatches
 - The Wh metavariable is underspecified for gender
 - Thus: the AT *tin ekpobi*, ‘the show’, even though marked for feminine gender will be able to get parsed
 - However, there is something missing
 - Even though *ti* is underspecified for gender, its clitic correlate is not
 - Thus, it is impossible for the metavariable projected by the clitic (*Fo(U_{neut})*) to be updated to the Wh metavariable with no gender restriction (violation of monotonicity)
However, this is also the second key of why gender mismatches are attested only with the neuter clitic.

- **Special status of the neuter clitic to**
 - Clitic *to* can function as both a type e argument as well as a type t propositional argument.

(25)
To ida to vivlio it.CL-ACC saw.1SG the book
‘I saw the book’

(26)
To ida oti den su aresi it.CL-ACC saw.1SG that NEG you like
‘I saw that you do not like it’

(27)
Oti irthes to diavasa that came.2SG it.CL-ACC read.1SG
‘I read that you arrived’
Lexical entry must ensure that both cases (e and t) can be captured.

Thus, the metavariable cannot have a neuter value given that this will not be the case in case to is of type t.

Also: it must ensure that in case it is a type e value, the metavariable will have a neuter value.

Lexical entry for to

\[
\text{IF } ?Ty(t) \\
\text{THEN } \text{put}((Ty(X), Fo(U), ?\exists X.((Fo(X) \land Ty(e)) \\
\text{ELSE} \text{ abort}
\]

Stergios Chatzikyriakidis
Linguistics Circle Colloquium, Edinburgh
Putting everything together

(28) \(To \ ida \ xtes \ 'I\ saw \ it \ yesterday' \)

\[
\begin{align*}
\diamondsuit & \quad \exists X. (Fo(X) \land Ty(e) \rightarrow (Fo(X_{\text{neut}}))) \\
\exists x. & \quad Ty(x) \\
Fo(U), & \quad Ty(e) \rightarrow (Fo(X_{\text{neut}})) \\
& \quad Ty(e) \rightarrow (e \rightarrow t), \\
& \quad Ty(e), \\
& \quad Fo(\text{Stergios'}) \\
& \quad Ty(e), \\
& \quad ?Ty(t) \\
? & \quad Ty(e) \\
\end{align*}
\]

This is the context for the implicit question!
(29) Implicit question

\[Ty(t), \text{Fo}(\text{ides}(WH)(\text{Stergios}')), \Diamond \]

- \[Ty(e), \text{Fo}(\text{Stergios'}) \]
- \[Ty(e \rightarrow t), \text{Fo}(\text{ides}(WH)) \]

\[Ty(X), ?\exists X. Ty(X), \text{Fo}(WH) \]
\[?\exists X.((\text{Fo}(X) \land Ty(e) \rightarrow (\text{Fo}(X_{neut})))) \]

- \[ti \text{ updates the metavariable } \text{Fo}(U) \text{ to } \text{Fo}(WH) \text{ and keeps the type metavariable and decoration } Ty(X), ?\exists x. Ty(x) \]
- \[ti \text{ is also underspecified for type, thus also keeps the restriction } ?\exists X.((\text{Fo}(X) \land Ty(e) \rightarrow (\text{Fo}(X_{neut})))) \]
The Analysis: Gender Mismatches in Greek

(30) Parsing the AT

\[Ty(t), Fo(\text{ides}(\nu, x, ekpobi}_{fem}^{'}(x)(\text{Stergios}'))), \Diamond \]

- The restriction \((\exists X. (Fo(X) \land Ty(e) \rightarrow (Fo(X_{neut}))))\) is satisfied
- The first part of the implication is false (no metavariables exist anymore).
What about ungrammatical examples?

(31) *Ton diavasa xtes,,
 him.CL-ACC-NEUT read.1SG yesterday
 tin epistoli
 the.ACC-FEM letter.ACC-FEM
‘I read the letter yesterday’

The clitic ton (him) will provide a gender restriction that has to be respected by the WH metavariable.

Thus, the ungrammaticality in case of a mismatch!
Added complication

In case animate referents are involved, no gender mismatches are allowed

(32) *To pantreftike,, tin
 it.CL-ACC-NEUT hit.1SG the.ACC-FEM
 Maria
 Mary.ACC-FEM
 ‘I hit Maria yesterday.’

(33) *To pantreftike,, ton
 it.CL-ACC-NEUT hit.1SG the.ACC-FEM
 Giorgo
 George.ACC-FEM
 ‘I hit George yesterday.’
The Analysis: Gender Mismatches in Greek

- Was this too good to be true?
 - Actually no!

- The clarification question in cases of animate referents involves the Wh *pio* and not *ti*.
 - *Pio* is gender restricted (neuter)

(34) #To pantreftike. Ti? To pedi it.WH married.3SG what the.ACC child.ACC ‘S/he married him (lit: it). What? The boy’

(35) To giatrepse telika. Pio? it.WH-NEUT married.3SG finally who.NEUT To pedi the.ACC child.ACC ‘S/he married him (lit: it). Who? The boy’

- No substitution will be allowed in case of a mismatch
The Analysis: Recapping

The generalization

(36) Gender mismatch is only possible between a singular neuter clitic correlate and an non-animate masculine/feminine singular NP AT

- The only case where the underspecified for gender Wh element *ti* is involved
- The plural form of the neuter (ta) plus all other 3rd person clitic forms will involve a gender restriction
- In case an animate referent is at play, then the relevant Wh element is *pio* and not *ti* anymore
 - Pio is marked for gender, thus no possibility of mismatches
ATs on a more General Perspective

- ATs can appear at different parts of the clause, not at the end of the clause.
- BRDs appear at the end only!

I have him yesterday only with effort recognized I mean the Peter.

I have him I mean the Peter yesterday only with effort recognized.

I have him yesterday I mean the Peter only with effort recognized
‘I hardly recognized him yesterday, I mean Peter.’
And the same in Greek

(38) a. Ton sinantisa,, ton Giorgo, xtes ekso apo to kafenio
him met the George yesterday outside from the coffe-house
b. Ton sinantisa xtes,, ton Giorgo, ekso apo to kafenio
him met yesterday the George outside from the coffe-house
c. Ton sinantisa xtes ekso apo to kafenio,, ton Giorgo
him met yesterday outside from the coffe-house
the George
‘I met George outside the coffee house’.
Structure assumed by Ott & De Vries (2012a)

\[(39) \quad *[C_{P1} \text{ ton ksero kala}] \ [C_{P2} \text{ ton Giani}_t \text{ ksero } t_t \text{ kala}] \]

Presupposes that the first clause has already been established

This can be argued for ATs that appear at the end, but is however problematic for the cases ATs appear in different parts of \(C_{P1} \).

No problem in principle for the current account (see paper for details)
Specificational ATs

(40) I met a great hollywood star,, John Travolta

(41) Gnorisa enan thriol,, ton Miki
met a.ACC legend.ACC the.ACC Mikis.ACC
Theodoraki
Theodorakis.ACC
I met a legend ,, Mikis Theodorakis’

Same account can be used

- Use of a restricted Wh
ATs on a more General Perspective

- Context for (41)

(42) Tree as context

\[Ty(t), Fo(sinantisa'(WH_{\epsilon,x,thrilo(x)}))(Stergios'), \Diamond \]

\[Ty(e), \quad Ty(e \rightarrow (e_s \rightarrow t)), \quad Ty(e \rightarrow (e \rightarrow t)) \]

\[Fo(Stergios'), \quad Fo(sinantisa(WH_{\epsilon,x,thrilo(x)}))), \quad Fo(sinantisa') \]

- The subscript says that the value that will update the Wh metavariable will identify x with the value Mikis Theodorakis
Some Further Properties

- Locality Effects
- RDs are well-formed in complement, relative and adjunct clauses

(43) Piet vertelde dat hij haar geplaagd had, die
Piet told that he her teased had that
vrouw
woman
‘Peter said that he had teased her, that woman’

(44) Ik sprak met iemand die haar geplaagd had, die
I spoke with someone who her teased had
vrouw
that woman
‘I spoke to someone who had teased her, that woman’
Some Further Properties

- Same for Greek ATs

(45) O Petros pidikse apo ti xara tu
the.NOM Peter.NOM jumped from the joy his
otan tin ide,, tin Maria
when her.ACC saw the.ACC Mary.ACC
‘Peter jumped out of joy when he saw Mary’
Some Further Properties

The problem arises when one assumes that (43) is derived by long distance movement out of the complex CP_2, which includes both clauses:

(46) \[CP_1 \text{ Piet vertelde [dat hij geplaagd had]}][CP_2 \text{ die vrouw [Piet vertelde [dat hij geplaagd had]]} \]

The account proposed here does not suffer from this problem:
- No assumption of movement over an elided structure
Conclusions

- I proposed a DS account of ATs
 - ATs as clarification answers to implicit questions
 - Natural Implementation in DS
 - Gender Mismatches in Greek fall out of the dynamics of the framework

- ATs on a more general perspective
 - The account can handle the fact that ATs can appear at different parts of the clause
 - Highly problematic for the existing accounts
 - The distinction between specificational and identificational ATs is not needed
 - There is no movement involved, so the problem of island violations does not even arise (it is orthogonal to the account)

